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Abstract: This paper is devoted to an impulse control problem where the control can only be exerted at the arrival
times of the Poisson process N . We generalized control state process and cost function, under some assumptions,
we obtained more general results. At the same time, we got the optimal control in special case.
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1 Introduction
The impulse optimal control problem is an important
research area in recent years. Baccarin [1] discussed
the optimal control of a multidimensional cash man-
agement system where the cash balances fluctuated
as a homogeneous diffusion process in Rn. They
formulated the model as an impulse control prob-
lem on an unbounded domain with unbounded cost
functions. Under general assumptions they character-
ized the value function as a weak solution of a quasi-
variational inequality in a weighted Sobolev space
and they showed the existence of an optimal policy.
Meng and Siu [3] investigated an optimal reinsurance
and dividend problem of an insurance company with
the presence of reinvestments, or retained earnings,
they considered the general situation that the com-
pany needed to pay both fixed and proportional costs
as mixed classical and impulse control problems to
get the value function and the optimal strategy. Yao,
Yang and Wang [7] considered the dividend payments
and capital injections control problem in a dual risk
model. This leaded to an impulse control problem.
Using the techniques of quasi-variational inequalities
(QVI), this optimal control problem was solved. Nu-
merical solutions were provided to illustrate the idea
and methodologies, and some interesting economic
insights were included.

The stochastic control problems with random
intervention times were originally put forward by
Rogers and Zane in 1998 [4]. They discussed a sim-
ple model of liquidity effects by the complexity of
Log normal controlled state, there was no closed-form
solution for corresponding cost problem, but they es-

tablished certain qualitative features of the solution.
Wang [5] simplified the controlled state, got explicit
solutions about a quadratic deviation cost and a pro-
portional control cost both discounted problem and
the ergodic problem. Yao etc [7] introduced a diffu-
sion in controlled state based on Wang’s, discussed
optimal control policies and value functions. The
main feature of control problems with random inter-
vention times is that the control is discrete, and control
can only be exerted at the arrival times of the Poisson
process N . This paper generalized state process and
cost function, under some assumptions, we obtained
more general results.

2 Mathematical Model
Consider a completed probability space ( Ω, F ,
P) with a filtration { Ft}t≥0 generated by a one-
dimensional Brownian motion W={Wt : t ≥ 0},
N={Nt : t ≥ 0} is an Ft-adapted Poisson pro-
cess with intensity λ > 0, θ = {θt : t ≥ 0}
is a non-negative Ft progressive measurable process.
ξt =

∫
[0,t) θsdNs is a non-negative left continuous

process, controlled state process evolves as follows

dXt = µ(Xt)dt+ σ(Xt)dWt − dξt

X0 = x

where µ(·), σ(·) satisfy conditions
for any n ∈ N, there exists Kn > 0 such that

1)(|µ(x)−µ(y)|+|σ(x)−σ(y)|)I{|x|≤n,|y|≤n} ≤ Kn|x−y|

2)|µ(x)|+ |σ(x)| ≤ C(1 + |x|)
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Definition 1 A set of admissible control π is that

π = {ξt : t ≥ 0, Xt ≥ 0}

Definition 2 A stopping time τ0 is as follows

τ0 = inf{t ≥ 0 : Xt = 0}

Definition 3 Value function

Vξ(x) = E[

∫ τ0

0
e−αtf(Xt)dξt + e−ατ0h(Xτ0)]

where

• α > 0 is discount factor,

• h(·) is non-negative function and h(·) ∈
Cb([0,∞)),

• f(·) is non-negative function, and f(x) is
monotonic increasing, when x < m, f(x) = f(m),
when x ≥ m.

The objective is to seek optimal control ξ∗, in or-
der to get

V (x) = sup
ξ∈π

Vξ(x) = Vξ∗(x).

Theorem 4 Suppose that there exists a function v(x)
satisfies

v(0) = h(0) (1)

v(x) ∈ C([0,+∞) ∩ C1
b [0,+∞) ∩ C2[0,+∞)) (2)

v′′(x) ≤ 0, x ≥ 0 (3)

v′(m) = f(m),m > 0 (4)

v′(x) > 0 (5)

max
0≤θ≤x

{−αv(x) + µ(x)v′(x) +
1

2
σ2(x)v′′(x)+

λ(v(x− θ)− v(x) + f(m)θ)} ≤ 0

(6)

then

v(x) ≥ V (x),∀x ≥ 0.

Furthermore, if v(x) satisfies

1

2
σ2(x)v′′(x) + µ(x)v′(x)− (α+ λ)v(x)+

λ(v(m) + f(m)(x−m)) = 0.

x > m

(7)

1

2
σ2(x)v′′(x) + µ(x)v′(x)− αv(x) = 0,

0 ≤ x ≤ m
(8)

then ξ∗ ∈ π is optimal, such that

v(x) = Vξ∗(x) = V (x),

v(x) is corresponding return function.

Proof:
Let τ = T ∧ τ0 ∧ inf{t > 0 : Xξ

t ≥ T}, ∀ T > 0,

For {e−αtv(Xt) : t ≥ 0} using Itô formula on
[0, τ ], then we have

e−ατv(X(τ))− v(x)

=

∫ τ

0
e−αt(

1

2
σ2(Xt)v

′′(Xt)

+ µ(Xt))v
′(Xt)− αv(Xt))dt

+

∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t)

+
∑

0≤t<τ

e−αt[v(Xt −∆ξt)− v(Xt)]

also

v(x) = e−ατv(X(τ))−
∫ τ

0
e−αt(

1

2
σ2(Xt)v

′′(Xt)

+ µ(Xt)v
′(Xt)− αv(Xt))dt

−
∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t)

−
∑

0≤t<τ

e−αt[v(Xt −∆ξt)− v(Xt)] .

by virtue of (6), we have

−(
σ2(x)

2
v′′(x) + µ(x)v′(x)− αv(x))

≥ max
0≤θ≤x

{λ(v(x− θ)− v(x) + f(m)θ)}

let

g(x) = max
0≤θ≤x

{(v(x− θ)− v(x) + f(m)θ)}

=

{
0, 0 ≤ x ≤ m;
v(m)− v(x) + f(m)(x−m), x > m.

(9)
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then taking into account (3), (4), we have
g(x) ∈ C[0,+∞), and 0 ≤ g(x) ≤ f(m)x.
when ∆ξt > 0,

v(Xt −∆ξt)− v(Xt) + f(m))∆ξt ≤ g(Xt)dNt

and ∫ τ

0
e−αtf(m))dξt =

∑
0≤t<τ

e−αtf(m))∆ξt

so

v(x) ≥ e−ατv(X(τ)) +

∫ τ

0
e−αtλg(Xt)dt

−
∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t)

−
∑

0≤t<τ

e−αt[v(Xt −∆ξt)− v(Xt) + f(m)∆ξt]

+

∫ τ

0
e−αtf(m))dξt

≥ e−ατv(X(τ)) +

∫ τ

0
e−αtλg(Xt)dt

−
∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t)

+

∫ τ

0
e−αt(−g(Xt)dN(t) +

∫ τ

0
e−αtf(Xt)dξt

= e−ατv(X(τ))−
∫ τ

0
e−αtg(Xt)dN̂t

−
∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t) +

∫ τ

0
e−αtf(Xt)dξt

≥ e−ατh(0)−
∫ τ

0
e−αtg(Xt)dN̂t

−
∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t) +

∫ τ

0
e−αtf(Xt)dξt

where N̂t = {Nt − λt : t ≥ 0} is compensation
Poisson process, it is also a martingale.

Take expectation on both sides of inequality,we get

v(x) ≥ Ee−ατh(0) + E

∫ τ

0
e−αtf(Xt)dξt

− E

∫ τ

0
e−αtg(Xt)dN̂t − E

∫ τ

0
e−αtσXtv

′(Xt)dW (t)

Let

Zτ =

∫ τ

0
e−αtg(Xt)dN̂t

Mτ =

∫ τ

0
e−αtσ(Xt)v

′(Xt)dW (t)

we can prove −E(Zτ +Mτ ) ≥ 0.
then we have

v(x) ≥ Ee−ατh(0) + E

∫ τ

0
e−αtf(Xt)dξt

when T → +∞,τ → τ0, by the monotone conver-
gence theorem [2]

lim
T→∞

E

∫ τ

0
e−αtf(Xt)dξt → E

∫ τ0

0
e−αtf(Xt)dξt

v(x) ≥ E

∫ τ0

0
e−αtf(Xt)dξt + Ee−ατ0h(Xτ0)

which implies that v(x) ≥ V (x).
Next we prove the existence of ξ∗, such that

v(x) = V (x) = Vξ∗(x)

Let

τ∗ = T ∧ τ∗0 ∧ inf{t > 0 : Xξ∗

t ≥ T}

ξ∗ = {ξ∗t : t ≥ 0}, ξ∗t =

∫
[0,t)

θ∗sdNs

θ∗s =

{
0, 0 ≤ X∗

s ≤ m;
X∗

s −m, X∗
s ≥ m.

(10)

we have

e−ατ∗v(X∗(τ∗))− v(x)

=

∫ τ∗

0
e−αt(

1

2
σ2(X∗

t )v
′′(X∗

t ) + µ(X∗
t )v

′(X∗
t )

− αv(X∗
t ))dt+

∫ τ∗

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t)
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+
∑

0≤t<τ∗

e−αt[v(X∗
t −∆ξ∗t )− f(m)v(X∗

t )]

then

v(x) = e−ατ∗v(X∗(τ∗))−
∫ τ∗

0
e−αt(

1

2
σ2(X∗

t )v
′′(X∗

t )

+ µ(X∗
t )v

′(X∗
t )− αv(X∗

t ))dt

−
∫ τ∗

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t) +

∫ τ∗

0
e−αtf(m)dξ∗t

−
∑

0≤t<τ∗

e−αt[v(X∗
t −∆ξ∗t )− v(X∗

t ) + f(m)∆ξ∗t ]

on account of∫ τ∗

0
e−αtf(X∗

t )dξ
∗
t =

∑
0≤t<τ∗

e−αtf(m))∆ξ∗t

and

v(X∗
t −∆ξ∗t )− v(X∗

t ) + f(m)∆ξ∗t = g(X∗
t )∆N∗

t .

therefore

v(x) = e−ατ∗v(X∗(τ∗)) +

∫ τ∗

0
e−αtf(m)dξ∗t

−
∫ τ∗

0
e−αt(

1

2
σ2(X∗

t )v
′′(X∗

t ) + µ(X∗
t )v

′(X∗
t )

− αv(X∗
t ))dt−

∫ τ∗

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t)

−
∫ τ∗

0
e−αtg(X∗

t )dN
∗
t

= e−ατ∗v(X∗(τ∗)) +

∫ τ∗

0
e−αtf(m)dξ∗t

−
∫ τ∗

0
e−αt(

1

2
σ2(X∗

t )v
′′(X∗

t ) + µ(X∗
t )v

′(X∗
t )

− αv(X∗
t ) + λg(X∗

t ))dt

−
∫ τ∗

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t)

−
∫ τ∗

0
e−αtg(X∗

t )dN̂
∗
t

as well

g(X∗
t )

=

{
0, 0 ≤ X∗

t ≤ m;
v(m)− v(X∗

t ) + f(X∗
t )(X

∗
t −m), X∗

t > m.

(11)

substitution

v(x) = e−ατ∗v(X∗(τ∗)) +

∫ τ∗

0
e−αtf(X∗

t )dξ
∗
t

−(Z∗
τ∗ +M∗

τ∗)

where

Z∗
τ∗ =

∫ τ∗

0
e−αtg(X∗

t )dN̂
∗
t

M∗
τ∗ =

∫ τ∗

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t)

Z∗
t +M∗

t =

∫ t

0
e−αtg(X∗

t )I]]0,τ∗]]dN̂
∗
t

+

∫ t

0
e−αtσ(X∗

t )v
′(X∗

t )I]]0,τ∗]]dWt)

then Z∗
t +M∗

t is local martingale.
As a result there exists a sequence of stopping time
τ ′n ↑ ∞, n ∈ N such that (Z∗

t )
τ ′n is a uniformly inte-

grable martingale with 0 initial value.

(Z∗
t +M∗

t )
τ ′n =

∫ t∧τ∗∧τ ′n

0
e−αtg(X∗

t )dN̂
∗
t

+

∫ t∧τ∗∧τ ′n

0
e−αtσ(X∗

t )v
′(X∗

t )dW (t)

E[(Z∗
t +M∗

t )
τ ′n |Fτ∗ ] = ((Z∗

τ∗)
τ ′n + (M∗

τ∗)
τ ′n)

E((Z∗
τ∗)

τ ′n + (M∗
τ∗)

τ ′n) = E((Z∗
0 )

τ ′n + (M∗
0 )

τ ′n) = 0

v(x) = e−α(τ∗∧τ ′n)v(X∗(τ∗ ∧ τ ′n))

+

∫ τ∗∧τ ′n

0
e−αtf(X∗

t )dξ
∗
t − ((Z∗

τ∗)
τ ′n + (M∗

τ∗)
τ ′n))
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Take expectation on both sides

v(x) = Ee−α(τ∗∧τ ′n)v(X∗(τ∗ ∧ τ ′n))

+ E

∫ τ∗∧τ ′n

0
e−αtf(X∗

t )dξ
∗
t

Let τ ′n ↑ ∞(n → ∞), where T → ∞, τ∗ ↑ τ∗0 ,
at this moment,

v(x) = Ee−ατ∗0 v(X∗(τ∗0 )) + E

∫ τ∗0

0
e−αtdξ∗t

= Ee−ατ∗0 v(0)) + E

∫ τ∗0

0
e−αtdξ∗t

= Ee−ατ∗0 h(Xτ∗0
) + E

∫ τ∗0

0
e−αtf(X∗

t )dξ
∗
t

= Vξ∗(x)

⊓⊔
From the above theorem, we know that the optimal
solution meet differential equation (7). But it is a
pity that this kind of equation no specific general
solution expression, so for as to no analytical so-
lution. Different forms of σ(x) and µ(x) have the
corresponding optimal solution in different forms,
we must according to the specific function to get the
optimal solution.

3 Example of optimal solutions
Model of linear stochastic growth

dXt = µdt+ σdWt − dξt

X0 = x

where parameters satisfy µ > 0, σ > 0, h(·) ∈
Cb([0,∞)), and non-negative. f(·) is non-negative
function, f(x) is monotone increasing, when x < m,
f(x) = f(m), when x ≥ m. and meet the following
assumptions, we can get the optimal solution of the
analytical form.
(I).2µ2λ > α2σ2

(II).f(0) > max( 2(α+λ)α
2µ(α+λ)+ασ2r̄2

,
2r42

r1(r22−r21)
)h(0)

(III).x ∈ (0,m), 0 ≤ f ′(x) < r1f(0)
where r1 > 0 > r2 are two roots of equation

σ2

2
z2 + µz − α = 0

r̄1 > 0 > r̄2 are two roots of equation

σ2

2
z2 + µz − (α+ λ) = 0

In linear stochastic growth model, theorem 4 changes
into

Theorem 5 Assume that there exists a function v(x),
satisfies

v(0) = h(0) (12)

v(x) ∈ (C[0,+∞) ∩ C1
b [0,+∞) ∩ C2[0,+∞)) (13)

v′′(x) ≤ 0, x ≥ 0 (14)

v′(m) = f(m),m > 0 (15)

v′(x) > 0 (16)

max
0≤θ≤x

{−αv(x) + µ(x)v′(x) +
1

2
σ2(x)v′′(x)+

λ(v(x− θ)− v(x) + f(m)θ)} ≤ 0

(17)

then v(x) ≥ V (x), ∀x ≥ 0.
furthermore, If v(x) satisfies

1

2
σ2(x)v′′(x) + µ(x)v′(x)− (α+ λ)v(x)+

λ(v(m) + f(m)(x−m)) = 0.

x > m

(18)

1

2
σ2v′′(x) + µv′(x)− αv(x) = 0 (19)

when 0 ≤ x ≤ m, then ξ∗ ∈ π is optimal control, such
that v(x) = Vξ∗(x) = V (x), v(x) is corresponding
return function.

Lemma 6 Construct a function

F (x) = Ar21e
r1x +Br22e

r2x

where A+B = h(0),

A =
r2e

r2mh(0)− f(m)

r2er2m − r1er1m
,

m is positive constant to be confirmed. In given con-
ditions, there exists unique constant m̂ > 0, that
F (m̂) = 0.
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Proof: For

F (0) < 0, F ′(x) = Ar31e
r1x +Br32e

r2x > 0,

and
lim

x−>∞
F (x) = +∞

then there exists unique constant m̂ > 0, such that
F (m̂) = 0, and

m̂ =
1

r1 − r2
ln
A− h(0)

A
(
r2
r1
)2

⊓⊔
Let

G(x) = a+ f(x)(be−r1x + ce−r2x)

where
a = r1r2(r1 − r2)h(0)

b = r22 −
αr2r̄2
α+ λ

c =
α

α+ λ
r̄2r1 − r21

Lemma 7 Under assumption, there exists unique
constant m ∈ (0, m̂), such that G(m) = 0.

Proof:

G(0) = a+ f(0)(b+ c)

= r1r2(r1 − r2)h(0) + f(0)(r22 − r21

+
α

α+ λ
r̄2(r1 − r2))

> h(0)(r1 − r2)(r1r2 +
2α

σ2
) = 0

G(m̂)
e(r1+r2)m̂

r̄2(r2er2m̂ − r1er1m̂)
=

1

r̄2
F (m̂)− α

α+ λ
f(m̂)

= − α

α+ λ
f(m̂) < 0

For
e(r1+r2)m̂

r̄2(r2er2m̂ − r1er1m̂)
> 0

hence G(m̂) < 0.
and

G′(x) = f ′(x)(be−r1x + ce−r2x)

+f(x)(−br1e
−r1x − cr2e

−r2x)

since

b > 0,−br1 < 0, c < 0,−cr2 < 0, f(x) > 0,

then
f(x)(−br1e

−r1x − cr2e
−r2x) < 0

when 0 ≤ f ′(x) < r1f(0)

G′(x) < r1f(0)(be
−r1x + ce−r2x)

+ f(x)(−br1e
−r1x − cr2e

−r2x)

= br1e
−r1x(f(0)− f(x))

+ c(r1f(0)− f(x)r2)e
−r2x < 0

thus G(x) is monotone decreasing on (0, m̂), then
there exists unique constant m ∈ (0, m̂), such that
G(m) = 0. ⊓⊔

Lemma 8 Under assumption,there exists function
v1(x), x ∈ [m,∞) satisfies

1

2
σ2v′′1(x) + µv′1(x)− (α+ λ)v1(x)

+λ(v1(m) + f(m)(x−m)) = 0 (20)

v′′1(x) ≤ 0, x ∈ [m,+∞) (21)

v′1(m) = f(m) (22)

Proof: Let

v1(x) = c2e
r̄2x + px+ q, x ∈ [m,∞)

where

c2 =
Ar21e

r1m +Br22e
r2m

r̄22er̄2m
< 0

p =
λ

α+ λ
f(m)

q =
(µ−mα)λ

α(α+ λ)
f(m)

easy to get v1(x) meet (20).
By calculation we have

v′′1(x) = c2r̄2
2er̄2x ≤ 0

(21) hold.

v′1(m)− f(m) = G(m)
e(r1+r2)m

r̄2(r2er2m − r1er1m)
= 0

i.e.
v′1(m) = f(m)

(22) hold. ⊓⊔

Theorem 9 There exists v(x)satisfies all conditions
of theorem 5. At same time value function can be ob-
tained i.e.v(x), corresponding optimal control ξ∗t =∫
[0,t) θ

∗
sdNs, θ∗t can be given by (10).
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Proof: Define a function v(x)

v(x) =

{
Aer1x +Ber2x, 0 ≤ x ≤ m;
v1(x), x > m.

(23)

where

A =
r2e

r2mh(0)− f(m)

r2er2m − r1er1m
,

B = h(0)−A,

v1(x) is similar to lemma 8 .
from the definition of v(x), (15) hold, so v(x) ∈
C1
b [0,+∞) for

v′′−(m) = Ar21e
r1m +Br22e

r2m, v′′+(m) = c2r̄2
2er̄2m

by the simple calculation we have

v′′−(m) = v′′+(m)

so v(x) ∈ C2[0,+∞)
Due to (18), (19) we get v−(m) = v+(m),
consequently v(x) ∈ C[0,+∞), (13) hold.
From the definition of v(x), we have v(0) = h(0),
(12) hold.
As a result of

v′(x) =

{
Ar1e

r1x +Br2e
r2x, 0 ≤ x ≤ m;

c2r̄2e
r̄2x + p, x > m.

(24)

we have v′(x) > 0, (16) hold.

v′′(x) =

{
Ar21e

r1x +Br22e
r2x, 0 ≤ x ≤ m;

c2r̄2
2er̄2x, x > m.

(25)

v′′(x) < 0, (14) hold.
We can easy to deduce Aer1x + Ber2x and v1(x) are
solutions of differential equation (18), (19) separately.
Hence v(x) satisfies all conditions of theorem 5. i.e.
v(x) is optimal value function,corresponding optimal
control ξ∗t =

∫
[0,t) θ

∗
sdNs, θ∗t can be given by (10). ⊓⊔

4 Conclusion
In this paper, by introducing a random insertion into
the controlled state governed by a Poisson process, we
extend originally function and terminal condition for
function satisfied some conditions, and discuss suffi-
cient condition about the existence of optimal control.
In addition, we find the optimal solution about linear
stochastic growth.

Acknowledgements: The author was supported
in part by National Natural Science Founda-
tion of China Grant No.11371051 and Founda-
tion of Beijing Municipal Education Commission
No.KM2014100150012.

References:

[1] S. Baccarin, Optimal impulse control for a mul-
tidimensional cash management system with
generalized cost functions, European Journal of
Operational Research, 196, 2009, pp. 198–206.

[2] A. Friedman, R. Wu, Stochastic differential
equations and applications Academic Press, (in
Chinese), (Vol. I) 1983.

[3] H. Meng, T. K. Siu, On optimal reinsurance,
dividend and reinvestment strategies, Economic
Modelling, 28, 2011, pp. 211–218.

[4] L. C. G. Rogers and O. Zane, A simple model
of liquidity effects, In ‘Advances in Finance and
Stochastics: Essays in Honour of Dieter Sonder-
mann’, eds. K. Sandmann and P. Schoenbucher,
Berlin, Springer. 2002, pp. 161–176.

[5] H. Wang, Some control problems with random
intervention times, Advances in Applied Proba-
bility. 33, 2001, pp. 402–422.

[6] R. Yang, K. Liu, Optimal impulse stochas-
tic control problem with drift parameter and
stopping time, Chinese Journal of Engineering
Mathematics. 23(3), 2006, pp. 543–552.

[7] D. Yao, H. Yang, R. Wang, Optimal dividend
and capital injection problem in the dual model
with proportional and fixed transaction costs,
European Journal of Operational research, 211,
2011, pp. 568–576.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Qiuyuan Wang

E-ISSN: 2224-2856 596 Volume 9, 2014




